Duality of Graphical Models and Tensor Networks

نویسندگان

  • Elina Robeva
  • Anna Seigal
چکیده

In this article we show the duality between tensor networks and undirected graphical models with discrete variables. We study tensor networks on hypergraphs, which we call tensor hypernetworks. We show that the tensor hypernetwork on a hypergraph exactly corresponds to the graphical model given by the dual hypergraph. We translate various notions under duality. For example, marginalization in a graphical model is dual to contraction in the tensor network. Algorithms also translate under duality. We show that belief propagation corresponds to a known algorithm for tensor network contraction. This article is a reminder that the research areas of graphical models and tensor networks can benefit from interaction.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rule-based joint fuzzy and probabilistic networks

One of the important challenges in Graphical models is the problem of dealing with the uncertainties in the problem. Among graphical networks, fuzzy cognitive map is only capable of modeling fuzzy uncertainty and the Bayesian network is only capable of modeling probabilistic uncertainty. In many real issues, we are faced with both fuzzy and probabilistic uncertainties. In these cases, the propo...

متن کامل

Approximate Inference in Graphical Models using Tensor Decompositions

We demonstrate that tensor decompositions can be used to transform graphical models into structurally simpler graphical models that approximate the same joint probability distribution. In this way, standard inference algorithms such as the junction tree algorithm, can be used in order to use the transformed graphical model for approximate inference. The usefulness of the technique is demonstrat...

متن کامل

Probabilistic Latent Tensor Factorization

We develop a probabilistic framework for multiway analysis of high dimensional datasets. By exploiting a link between graphical models and tensor factorization models we can realize any arbitrary tensor factorization structure, and many popular models such as CP or TUCKER models with Euclidean error and their non-negative variants with KL error appear as special cases. Due to the duality betwee...

متن کامل

Tensor Networks for Big Data Analytics and Large-Scale Optimization Problems

Tensor decompositions and tensor networks are emerging and promising tools for data analysis and data mining. In this paper we review basic and emerging models and associated algorithms for large-scale tensor networks, especially Tensor Train (TT) decompositions using novel mathematical and graphical representations. We discus the concept of tensorization (i.e., creating very high-order tensors...

متن کامل

Convex relaxation methods for graphical models: Lagrangian and maximum entropy approaches

Graphical models provide compact representations of complex probability distributions of many random variables through a collection of potential functions defined on small subsets of these variables. This representation is defined with respect to a graph in which nodes represent random variables and edges represent the interactions among those random variables. Graphical models provide a powerf...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1710.01437  شماره 

صفحات  -

تاریخ انتشار 2017